一个轻微摆的方案,类似钟摆的来回摆动 拆解

test 2017-6-14 3892


  

原理简介:

本电路中Q3为低功耗、高增益放大器,相对 于Q3来说,通过R1供电,C2为滤波电容,Q3为共发射极放大电路,R2为集电极负载电阻,R4提供基极电流,R5稳定流工作点,C4为交流旁路电容, 这样,Q3大约会有0.1-0.2MA的工作电流,工作在放大状态,C5为高频滤波电容,消除L1较长的引线带来的干扰信号,R6和C6为信号输入,C6 为隔直电容。

当L1感应到磁铁经过时,会感应出几微伏的电压信号,该信号是 一个周期的低频交流信号,改变磁铁的南北极或者交换L1的两端接线,使负半周先出现,当负半周时,Q3集电极电压上升,当负半周结束时,这时磁铁已经荡过 线圈的中心位置,信号进入正半周,这时Q3基极电压升高,Q3集电极电压下降,这时Q1会产生较大的基极电流,从面会产生更大的集电极电流,该集电极电流 经过R3产生远远高于0.6V的压降,从而Q2也进入导通状态。

这里Q1和Q2构成的实际上是一个可控硅电路,Q2导通会加剧 Q1导通,Q1导通会加剧Q2导通,这是一个强烈的正反馈过程,在一瞬间,Q1、Q2完全导通,C2电压会急速下降,同时,由C3两端的电压不能突 变,C3会立即经过R7、R8充电,由于R8大于R7,这会给Q4产生基极电流,Q4导流,L1线圈得电产生电流,该电流正好是产生排斥磁铁的力,相当于 在最合适的时候,推了一下秋千。

Q1、Q2组成的可控硅电路导通,C3也充电充满了,C2也因 为放电两端电压大幅下降,Q3也退出放大状态了,之后的电流来源只剩下R1供电了,但是R1电阻较大,最大供电电流也会小于0.5MA,这样就使得C2两 不能在R3上产生大于0.6V的压降,Q2会没有基极电流,集电极电流也会变成没有,Q1也会跟着截止,C3充电也结束,Q4没了基极电流也会截止,最后 的结果就是所有的三极管都会截止,这时R1会给C2充电,C2两端电压会上升,C3会通过R7、R8、R1放电,C3两端电压会下降,当C2电压上升到一 定值时,Q3又会进入放大状态,等待秋千的下一次经过。

因此,本电路工作时,没有秋千经过时,只有Q3工作在微电流放大(工作电流小于0.1MA)状态(Q1也可能会产生一点点的电流),但是总的静态工作电流已经由R1限制在0.1MA左右,即使电源电压上升到6V时,整机的静态电流也小于0.5MA,所以,本电路非常省电。另外,Q4平常一直都是工作在零偏置,处于截止状态,仅仅只在最需要推秋千的瞬间才给L1供电推动秋千,因此,本电路的工作效率极高!如果要减少推力,可以在L1上串联电阻,限制经过L1的电流。


最新回复 [0]
返回